

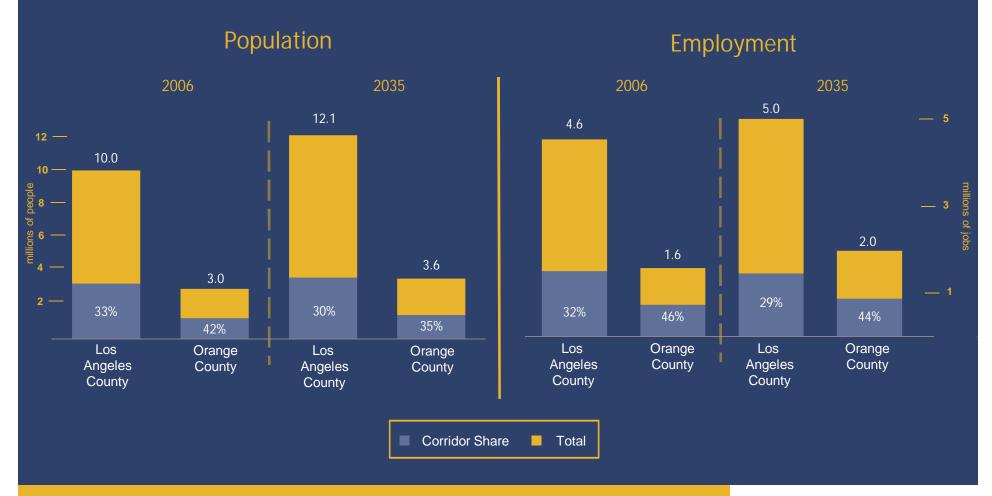
Initial Screening Results

November 2010

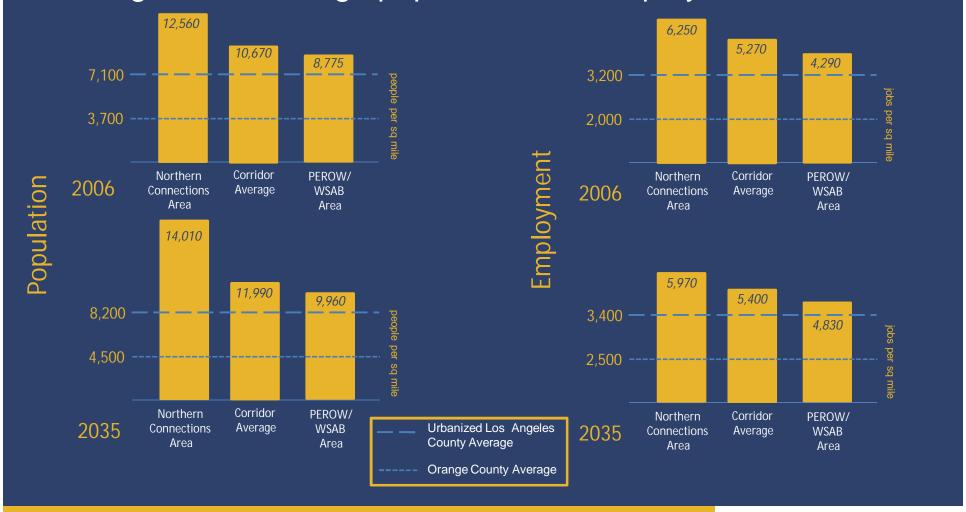
Overview of Presentation

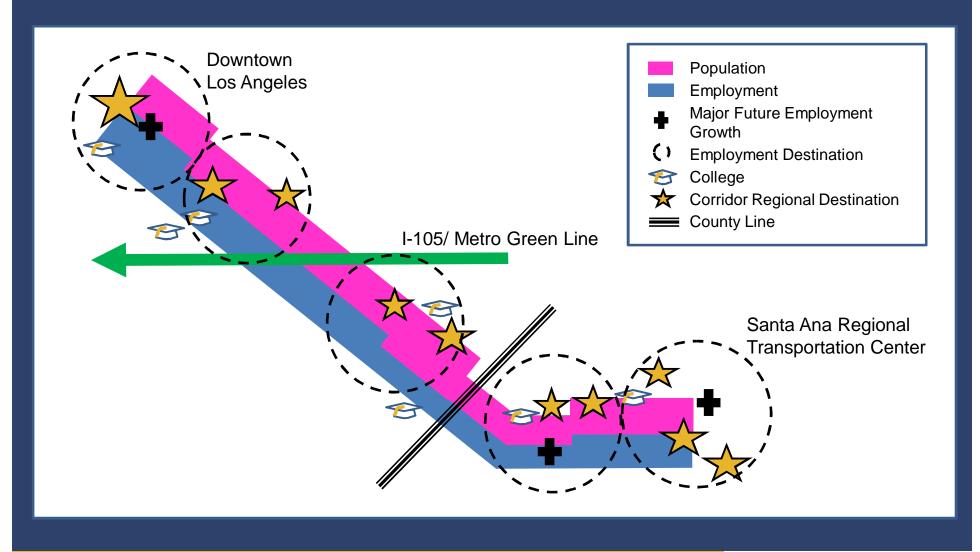
Starting Initial Screening Discussion with Overview of:

- Purpose and Need Findings
- Description of Initial Set of Alternatives
- Initial Screening Results


Decision on Final Set of Alternatives: January 2011

Why This Corridor?


Large share of regional population and employment


Why This Corridor?

Existing and future high population and employment densities

Overview of Corridor

Transportation System Challenges

From a transportation system perspective:

- Corridor highway system operates at-capacity and beyond today and in the future
- Corridor residents lack connections to the regional transit system and have few travel options
- Corridor transit system operates at-capacity and beyond in some areas
- Corridor contains a significant low income/transit dependent population

Investment Benefits

A high capacity transportation system improvement would:

- Provide a new, faster travel option
- Provide connections to the regional transportation system
- Improve access to corridor activity centers
- Support local plans for economic development and community revitalization

Potential Corridor System

Alternatives Considered

No Build Alternative

TSM Alternative

Bus Rapid Transit (BRT)

Street Car (STCR)

Light Rail Transit (LRT)

Diesel Multiple Unit (DMU)

High Speed Rail (HSR)

- -Conventional
- -Maglev

Bus Rapid Transit Alignments

Trips

Serves regional and local trips

Speed

Street-running (10-14 mph)

HOV (25-35 mph)

Speed constrained by peak period

congestion

Station Spacing

Land Use Plans 1.0 mile between stations

Support for development/revitalization plans proven internationally (Canada, Australia)

Rail Alternative Alignments

Trips Serves regional and local trips

Alignment Use RR ROW with temporal separation or

provide 3 tracks

Speed Provides a low to medium speed: 8.5 - 15

mph (Streetcar); 25-35 mph (LRT); 25-55

mph (DMU)

Station Spacing 0.2-0.5 miles between stops (Streetcar) 1-1.5 miles (LRT); 1.5-3.0 miles (DMU)

Land Use Plans

Demonstrated support for development/revitalization plans

High Speed Rail Alignment

Trips Serves regional trips

Alignment | Requires separate ROW for Northern

Connection area

Speed Provides high speed of 110-220 mph

Station Spacing

Land Use Plans 10-20 miles between stations

Demonstrated support for high density development nationally (Conventional) and internationally (Conventional & Maglev)

Vertical Alignments

Alignment	BRT	Streetcar	Light Rail	Diesel Multiple Unit	High Speed Rail
At-grade	√	\checkmark	\checkmark	√	_
Above- grade	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Below-grade	_	√	√	_	√

Potential Stations

Station locations for Initial Screening (east bank of Los Angeles River only):

BRT, Streetcar, I	_RT, DMU	Options
-------------------	----------	---------

City	Station
Los Angeles	Union Station
	Soto/Olympic
Vernon/Maywood	Leonis/District Blvd.
Huntington Park	Gage or Florence Ave.
South Gate	Firestone Blvd.
	Gardendale Blvd.
Paramount	Paramount Blvd.
Bellflower	Bellflower Blvd.
Cerritos	Studebaker Rd.
Artesia	Pioneer Blvd.
Cypress/Buena Park	Cypress College
Stanton	Beach Blvd.
Garden Grove	Brookhurst St.
	Harbor Blvd.
Santa Ana	Bristol St.
	Santa Ana RTC

HSR Conventional

City	Station
Los Angeles	Union Station
Paramount	Metro Green Line
Cerritos	Studebaker Rd.
Stanton	Beach Blvd.
Santa Ana	Santa Ana RTC

HSR Maglev

City	Station
Los Angeles	Union Station
Paramount	Metro Green Line
Stanton	Beach Blvd.
Santa Ana	Santa Ana RTC

Initial Screening Criteria

Initial set of alternatives evaluated based on:

- Public and Stakeholder Input
- Mobility Improvements including ridership and travel speed
- Support for development/revitalization plans
- Environmental Impacts
- Engineering and Operating Viability

Public and Stakeholder Input

Input provided through:

Advisory committees October/November/January

Community meetings November/December

Elected Official/Stakeholder briefings October-January

Public presentations October-December

Public comments October-December

Travel Speeds

Resulting Speed based on:

- Station spacing
- Operational capabilities
- Mode-specific design requirements
- At-grade or grade-separated operations

	BRT	STCR	LRT	DMU	H Conventional	SR Maglev
At-Grade	10-14	8.5-15	25-35	25-35		
Grade- Separated	25-35	25-40	45-55	45-55	110-220	150-270+

Conceptual Ridership

Range of possible Daily Boardings based on:

- Similar projects
- Proposed alignments and station spacing

BRT RAIL HSR

Conceptual Ridership

19,200-32,400

26,000-57,600

2,400-4,800

Conceptual Cost to Build

Order-of-Magnitude Construction Costs*

Union Station to Santa Ana Regional Transportation Center (2010\$, billions)

	BRT	STCR	LRT	DMU	HSR	
,	DICI	31010	LIXI	DIVIO	Conventional	Maglev
At-Grade	\$0.60	\$1.30	\$1.60	\$1.22	-	-
Above-Grade	\$2.18	\$3.95	\$4.21	\$4.11	\$4.91	\$5.94
Below-Grade	**	\$9.81	\$10.61	**	\$13.35	\$14.01

^{*} These costs are conceptual order of magnitude estimates

^{**} Typically not done due to ventilation issues

Funding Sources

Possible Funding:

Los Angeles County

Measure R Funds*

\$649 million

Other Funding (50 percent match from local, regional, state, and federal)

+ \$649 funding

Projected Available Funding

\$1,298 billion

^{*} LACMTA 2009 LRTP, escalated to year of expenditure (2027)

Conceptual Cost To Operate and Ride

Annual Cost to Operate (\$2010)

	BRT	Street Car ²	LRT ¹	DMU	High Speed Rail ³
Cost Per Service Hour	\$80-120	\$140-150	\$160-250	\$250-300	\$2,500-3,000

Current/Forecast Fare

Fare Per \$1.50 One-Way Trip		\$2.05 \$1.50		\$2.00	\$50-55*
	Metro	Portland,	Metro Gold	NCTD	Amtrak
	Orange Line	West Sacramento	Line	Sprinter	Acela

¹ Metro Eastside Phase 2 Preliminary Operating Costs Technical Memorandum

² Portland Streetcar Operating & Maintenance Division

³ SCAG High Speed Regional Transportation Alternative Analysis, Alternative Analysis Note: Operating Cost stated as being within 5% for Maglev & Steel Wheel HSR Systems

^{*} Baltimore to Washington, DC

Conceptual Cost Per Rider

Order-of-Magnitude Cost Per Rider*

Union Station to Santa Ana Regional Transportation Center (2010\$, billions)

Conceptual _	BRT STCR		LRT	DMU	HSR Conventional Maglev	
Annual Cost Per Rider	\$20-50	\$10-40	\$10-50	\$10-50	\$460-920	\$580-1150

^{*} These costs are conceptual order of magnitude estimates

Environmental Concerns

Key environmental and community impacts identified by the public and stakeholders:

- Noise and Vibration
- Air Quality
- Visual and Privacy
- Traffic Impacts
- Property Acquisition

Noise and Vibration Impacts

Average 24-hour Noise Exposure¹:

	Hwy	Hwy pprag of the state of the s				HSR		
	4 lanes	BRT ^{2,3}	STCR ³	LRT ³	DMU ³	Conventional	Maglev	
Noise (dBA)	79	63/65	64	64	65	71	64	

¹ Represents conditions with no noise mitigation measures

Source: FTA

Vibration Impacts:

	Hwy ppt ctop lpt paul				HSR		
	4 lanes	BRT	STCR	LRT	DMU	Conventional	Maglev
Vibration	1	1	1/2	2	1/5	5	1/5
Category	'	'	1/2	J	4/3	<u> </u>	4/3

1. Rubber tire systems

Source: FTA

- 2. Lighter, smaller/weight steel-wheel vehicles; low operating speeds
- 3. Medium-sized/weight steel-wheel vehicles coupled together; medium speed
- 4. Heavier-weight, larger vehicles; faster operating speeds
- 5. Locomotive-operated systems; fastest operating speeds

Categories 3-5 may require vibration mitigation

² Represents electric/diesel buses.

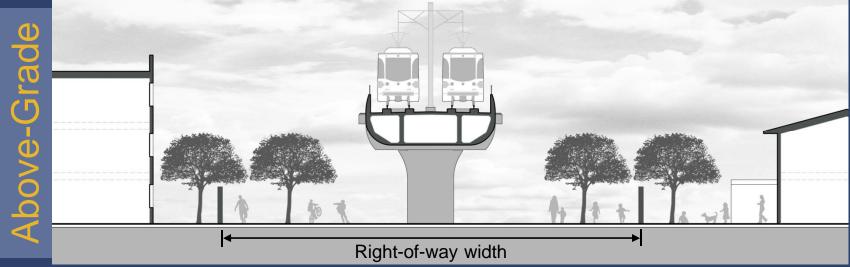
³ Represents operation noise only; noise from bells, horns, and warning gates to be identified when more detailed design information is available. (Metro Gold Line = 67 – 76 dBA, Freight = 90 – 110 dBA)

Air Quality

Air Quality Benefits

	No Build	BRT	STCR	LRT	DMU	HSF Conventional	R Maglev
Regional Emissions	Base	Yes	Yes ¹	Yes ¹	Yes/No ²	Yes ¹	Yes ¹
Local Emissions	Base	Yes ³	Yes	Yes	No	Yes	Yes
Carbon Monoxide	Base	Yes ³	Yes	Yes	No	Yes	Yes
Toxics	Base	Yes ³	Yes	Yes	No	Yes	Yes
Greenhouse Gases	Base	Yes	Yes	Yes	Yes	Yes	Yes

¹ Assumes electrical power meets California Renewables Portfolio Standard (RPS).


² Provides benefits over No Build conditions, minor increase in regional emissions from clean diesel operations

³ Assumes buses run on natural gas or other alternative fuel, rather than diesel.

Visual and Privacy

Traffic Impacts

Summary of possible traffic impacts:

- At-grade operational impacts include:
 - Traffic signal cycle changes
 - Queuing and capacity impacts
 - On-street parking impacts
 - Bikeway and pedestrian safety
- Above-grade operational impacts due to columns:
 - Visual and safety impacts
 - Capacity, left turn lanes, and parking impacts
- Unique diagonal street crossings will increase traffic impacts

Property Acquisition

Acquisition may be required for:

- Stations, bus/shuttle transfer, parking, and other facilities
- Alignment/System requirements

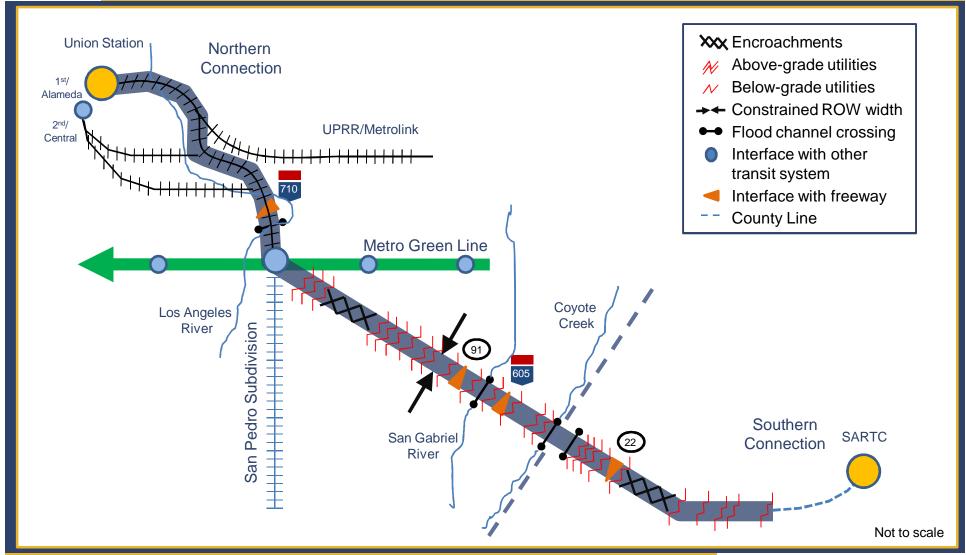
Possible Acquisition (parcels)

Along PE ROW from Metro Green Line to Santa Ana RTC

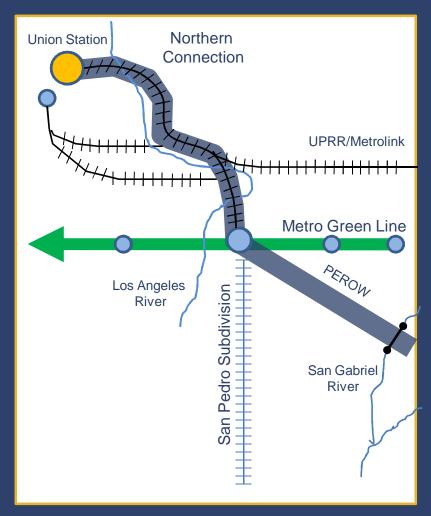
BRT	STCR	LRT	DMU	HSR Conventional Maglev		
_	_	Less than 10	Less than 10	More than 100	More than 100	

Acquisition requirements from Metro Green Line north to Downtown Los
Angeles to be identified in next study phase

Engineering and Operational Viability


Evaluated during Initial Screening:

- Right-of-Way Constraints
- Northern Connection Solution
- Southern Connection Solution
- Operating Viability



PEROW Constraints

Northern Connection Challenges

- Compatibility with:
 - Freight rail operations
 - Metrolink and CAHST service
 - Metro Green Line
- Multiple approving/cooperating agencies
- Limited track capacity from UPRR/Metrolink tracks into Union Station
- Fit with city street operations with high truck volumes

Southern Connection Challenges

3AGGFG PIUJE	ct scriedule
Complete	Date
Evaluation of Final Alternatives	Spring 2011
Draft Environmental Document	Summer 2011
Preliminary Engineering	Spring 2012
Phase I Construction	Winter 2014/ Spring 2015
Phase II Construction	Fall 2020

SACCEC Project Schodule

Fit with Santa Ana-Garden Grove Fixed Guideway Project:

- Study and implementation timeframe
- Fit with planned modes

Outstanding Engineering Issues

Addressed during Final Screening efforts:

- Design of alignment, stations and related pedestrian/bicycle facility
- Design of vertical alignment best combination of at-grade and grade-separated operations
- Work on resolving Northern Connection Issues
- Assess fit with other system plans Ports/ACTA, UPRR, Metrolink, CAHST, SA-GGFG Project and Union Station/Downtown Los Angeles

Operating Viability

Operating Assessment

Metro/OCTA System Fit

CAHST System Fit

Domestic Revenue Service

Can meet Federal "Buy America" Requirements

BRT	STCR	LRT	DMU	HSR Conventional Maglev	
√	*	√	No existing entity		No existing entity
				✓	No
√	√	√	√	√	Not yet
√	√	√	√	√	Not yet

^{*} May fit with future SAGGFG project operations

Initial Screening Summary

	DDT	CTOD	LDT		HSR	
	BRT	STCR	LRT	DMU	Conventional	Maglev
Serves: Local trips Regional trips	√ √	√	√ √	√ √	√	√
Provides support for local plans	*	✓	✓	*	*	*
Requires Acquisition	Minimal	Minimal	Minor	Minor	Major	Major
Has Air Quality Benefits	Yes	Yes	Yes	No**	Yes	Yes
Fit with current system plans	√	√	√	No	No	No
Has State and Federal approved vehicles/system	√	√	√	√	√	Not Yet
Conceptual Ridership	19,200- 32,400	26,000- 39,000	26,000- 57,600	26,000 - 57,600	2,400-4,800	2,400-4,800
Conceptual Cost to Build (\$2010, billions)	\$0.6-2.2	\$1.3-4.0	\$1.6-4.2	\$1.2-4.1	\$4.9	\$5.9
Conceptual Annual Cost Per Rider	\$20-50	\$10-40	\$10-50	\$10-50	\$460-920	\$580-1,150

^{*} Proven nationally and internationally

^{**} Some regional benefits

Final Set of Alternatives

In January, 2 alternatives identified for further study based on:

- Meets Project Purpose and Need
- Appears viable from cost/ridership, funding, engineering, operating and environmental perspective
- Has public/stakeholder support (meets local goals)

Decision-Making Criteria

Criteria used to identify final Locally Preferred Alternative:

Metro/OCTA

- Fit within financially constrained LRTP's
- Stakeholder/public support
- Fit within developing regional transportation system

Cities

- Supports local development/revitalization plans
- Provides transportations improvement
- Has minimal community impacts

FTA

- Funding and operating viability
- Cost-Effectiveness
- Livability issues economic development opportunities and environmental benefits

Next Steps

Steering Committee Discussion

November 2010

Community Meetings

November 2010 December 2010

Technical Advisory Committee Discussion

January 2011

Steering Committee Recommendation On Final set of Alternatives

January 2011

